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The general problem of controlling the heating of massive bodies in chamber furnaces is formulated, and 
opt imum control solutions are given for two cases of heating of a plate with Newtonian heat transfer at its 
surfaces. 

Let us assume that a body is being heated in a furnace, the body occupying a certain region D bounded by a sur- 
face G. Let us further assume that the temperature  of the heating medium u*(t) does not depend on the space coordinates. 

Then the heating process for the body can be expressed by the equation of thermal  conduction 

where (x ,  y, z) E D, t > O, 
together with the ini t ia l  condition 

oQ = a [ ] 
0-7 L + § ' Og ~ Oz ~ ] 

O(x, y, z, 0 ) =  Q0(x, z) 

(1) 

(2) 

and the following boundary condition of type III 

oQ 
= a~ {[u*(t)l 4 [Qp} q- c~ {u*( t ) - -  Q}, (a) 

On 

where Q = Q(x, y, z) and (x, y, z) E G. 

As the control function we shall take the t ime  function v(t), describing the position of the valve which opens to ad-  
mit fuel to the working space of the furnace, and impose on this function the l imi ta t ion 

A~ " ' ~ '  (4) v (t) -< & 

where A~ corresponds to the extreme position of the valve,  at which a maximum quantity of fuel enters the furnace, 
while the other ext reme position of the valve v(t) = A~ corresponds to comple te  shutdown of fuel admission, 

The relat ion between u*(t) and V(t) must be assigned so as to introduce function v(t) into boundary condition (3) of 
our problem, Using the language of automat ic  control theory, we need to find the transfer function of the system whose 
input is the control act ion v(t), and whose output is the temperature  of the heating medium,  In the simplest case, the 
transfer function may be represented in the form of two e lementary  links connected in series" a delay link, taking into 
account the lag due to the f inite rate of gas supply and the f inite length of the pipeline between the control valve and 

the working space of the furnace, and an inert ia  link, taking into account the gradual rise of temperature  in the furnace 
for a stepwise increase in fuel supply, The equation of this transfer function has the form 

B du*(t______~) -F u* (t) = kov(t - -  ~). (5) 
dt 

To formulate the opt imum heating problem, we must take  into consideration a number of l imits ,  the most impor-  
tant being the l imits of the surface temperature ,  temperature  gradients, and temperature  drops in the body. 

64 

These may be written in the form: 

Q(x, y, z, t ) 4  As when (x, y,  z ) ~  G, 

1 grad Q (x, y, z, t) ~ A 4 when (x, y, z) ~ D, 

max [Q(xl, yl, zl, t ) - -Q(x2 ,  y2, z2, t) l ~  A5 

(X1, ~/1, 21) ~ D, (x~, g~, z2).~ D. 

The quali ty of heating can be expressedas  the following functional:  

D 

(6) 

(~) 

(8) 



The following formulations of the problem of optimum heating control are of practical interest. 

I .  For the conduction equation (1)-(3) and the coupling equation (5) choose a control action v(t), 0 -< t ~ T, restrained 
by condition (4), such that the functional I0 satisfies the condition t 0 ~ 6 (where 6 is some assigned number 6 > 0 denot- 
ing the accuracy of approximation to the desired distribution) in the min imum possible t ime T, while at any instant 0 -< 
-< t -~ T o the limitations(6), (7), (8) must be observed. 

2, For conduction equation (1)2(3); coupling equation (5), and a given heating t ime, the control action v(t), 0 -< t -< T, 
restrained by condition (4), must be such that the functional I 0 attains its minimum possible value at t ime t = T, while 
the limitations (6), (7), (8) are observed throughout the entire heating process. 

Let us examine in detail the solution of the simpler problems concerning optimum heating of a one-dimensional  
plate of thickness 2S in a medium with temperature u*(t), subject to the l imita t ion 

A~ <_ ~:'(t) <~ A2. (9) 

Bearing in mind that the duration of all  the intermediate processes in the furnace is incommensurably less than tl~e 
overall heating t ime,  we shall neglect the inertia of the furnace and the lag in the pipeline and take as control action 
the temperature of the medium u*(t). 

We shall write the conduction equation for the plate in criterial dimensionless form: 

oq (4 ~) _ O~q d, r 
0 ~, 01" ' 

(io) 

q (l, o) = -- ~, (in 

Oq(-}- 1, qD) _-= B i [ u ( ~ ) - - q ( - t -  1, ~)l ,  (12) 
Ol 

Oq(-- 1, qD) = B i [ u ( @ - - q ( - -  1, q0)]. 
dt 

The conversion formulas to dimensionless quantities are: 

(13) 

2[0 (l, ~) - -  Q*] (i4) q(4 r = 
A2 - -  A1 

2[u*(~) --  Q*I u (cp) = , (I5) 
-42 - -  A1 

2[0* --  Oo] 
= - (16) 

A~-- J l  

x ~ .  A2 + A~ - -  2Q* (1~) 
A~ -- A1 

We shall assume the ini t ia l  and the required temperature distributions in the plate to be constant and equal respectively 

to Q0 and Q*. 

By virtue of (9), (14), (15), (17) the dimensionless control action u(~0) is now restrained by the condition 

- - ( l - - ~ )  ~ u( ,~)~ (1 + J .  

We shall find the control action u(~o), 0 ~ ~0 _< ~%, restrained by condition (18), such that the equality 

(18) 

q (l ,  %) - -  0, - -  1 ~< l < -t- 1. (19) 

is fulfilled in the min imum t ime  (P0. The solution of equations (10)-(13) may be written in the form [3] 

q(/'~P)=~k=lAkCOS?k/{ - v e x p [ - I ~ < ? ]  + ~ f u ( ~ ) X 0  
] 

>< exp [--~(q~-- ~)] d ~ I " (~0) 

It is not hard to see that to satisfy (19) for min imum ~00 it is necessary and sufficient that function u(~o) satisfy an 

infini te  number of equaiities of the type 
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C - ~ t )  
0 

the t ime ~00 then being the min imum possible, In mathematics this problem is called the infini te-dimensional  problem of 
moments.  It was shown in [4] that a function u(~0), 0 <-- p -~ ~o 0, satisfying (21) exists, assumes only its boundary values 
( 1 -  x) and (I  + x), and has an unbounded but denumerable number of change-over points on the intercept [0, q)0], the 
point ~0 being a l imit ing change-0ver point. The form of this function is shown in Fig. I .  

Solving the problem for finite n, i . e . ,  k = 1, 2 . . . . .  n in  (21), a f ini te-number problem of moments, �9 we can sat- 
isfy (19) to any degree of accuracy specified in advance. Methods of solution of f in i te -number  problems of moments are 
set out in detail in [2] and [5]. In practice, to obtain the best approximation to a required distribution, it is usually 

enough to put n = 2, 3, 4. Here~ the greater the parameter Bi, the more slowly the terms of series (20) decrease, and 

the larger must be the number n. 

Let us consider a numerical  example.  Assume that it is re- 
quired to heat a solid slab of thickness 2S = 0 .4  m from an ini t ia l  

temperature Q0 = 20~ to a temperature Q* = 960 ~ Assume further 
0.03 

that a - m2/sec, k = 30 • 1. 163 w/m �9 degree, c, = 
36.102 

: 225 • 1.163 w/m z �9 degree, and consequently, Bi = 1.5, x = 
= 0 . 6 ,  v : 2.35. 

Using methodsset out in [2], we find functions u2(~o ), u3(qo ), 
which transform to identity the first two or three of equations (21) 
in the min imum possible t ime.  Returning then to dimensional quan- 

tities, we obtain 

[ +1600~ when 0 ~ t ~ 7 7  rain, 
/~ (t) / 

[ + 800 ~ C when 77 min < t~87 ;  

+ 1600 ~  when O 4 - t - < - 7 8 m i n ,  

U~ ( t ) =  + 8 0 0 ~  when 78 min < t < 88,5 rain, 

+ 1600 ~ C when 88,5 rain < t < 89 min �9 

*i 
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Fig. I .  Form of optimum control accurately real- 

izing uniform temperature distribution in minimum 

t ime.  

-a2 

The temperature distributions obtained in the plate for this control action are shown in Fig. 2. 

Note that for engineering applications the difference between control actions u~(t) and u~(t) is insignificant,  In-  

deed, a second switching of function u~(t) does not make sense, since its last interval of constancy is only 30 sec, and 

certainly comparable with the duration of the transient process in any real furnace. 
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Fig. 2. Temperature distributions in plate: 

B i = 1 . 5 ,  x = 0 . 6 ,  v = 2 . 8 5 ,  l a n d 2 -  for control 

actions u~(t) and u~(t). 

u ( c p ) = z + s i g n  Bkexp[--F~(cp0--cp)] v e x p ( - - F ~ % ) - - ~  u(q~)exp[--F~(q~0--~p)l@ , 
k = l  0 

We shall formulate the second plate problem as fol- 

l o w s  �9 

For equations (10)-(13) and a given t ime ~o 0 we are re- 

quired to find u(~), 0 < ~o -< ~o0, restrained by condition (18), 

such that the functional !0 = { [q (1, ,~0, u (q)))] 2 dl is min-  

imized for this function. -l~ 

By the method of the maximum principle [1], we can 

obtain the necessary condition, which the optimum control 

action uGo) must satisfy, in the form 

(22) 

where B k = 
2Pk sl n2 Pk 

Pk -Jr- sin Pk cos Pk 
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So far,  a genera l  m e t h o d  of so lu t ion  of equa t ion  (22) for any v a l u e  ~0 has not b e e n  found.  However ,  in  c e r t a i n  

spec i a l  cases this  e q u a t i o n  can  be  solved by a n u m e r i c a l  m e t h o d .  For e x a m p l e ,  if  t he  t i m e  ~0a ( the  m i n i m u m  t i m e  for 

which  p rob l em (1_9) has a so lu t ion  for n = 3) is f ixed,  t hen  it is not hard  to show tha t  (22) does not a d m i t  solut ions with a 

n u m b e r  of c h a n g e - o v e r s  g rea te r  t h a n  two, for any ~o 0 -< ~o0a, and,  consequen t ly ,  for this  reg ion  the  v a r i a t i o n  of t i m e  is 

eas i ly  sought .  For e x a m p l e ,  a so lu t ion  m i n i m i z i n g  f u n c t i o n a l  I 0 m a y  be  found by i n spec t i on .  

t qee o,/ ! / o~ / 
Fig.  3. T e m p e r a t u r e  d is t r ibut ions  in  p l a t e :  

Bt = 3 . 0 ,  x = 0 .0 ,  v = 1 .5 ;  1 - h e a t i n g  wi th  c o n -  

t ro l  a c t i o n  ua(~o); 2 - o p t i m u m  h e a t i n g ,  in  t he  

sense of leas t  m e a n  square  d e v i a t i o n ,  with  con t ro l  

a c t i o n  u~(r  

t +l  when  0 -< ~0 - 0 . 7 0 0 ,  

ua(~o ) = i -  1 when  0. 700 < ~0 __<_ 0. 765, 

[+1 when  0 . 7 6 5  < ~o _< 0. 780; 

~ +1 when  0 -< ~ -< O. 702, 

u~(~o) = / 7 1  when  0 . 7 0 2  < ~o _< 0 . 7 6 %  

[+1 when  O. 767 < ~0 _< O. 580. 

Fig.  3 gives t he  so lu t ion  of the  e x a m p l e  Bi - 3 .0 ,  z = 

= O, v = 1 . 5 .  Curve  1 is t h e  t e m p e r a t u r e  d i s t r ibu t ion  ob 

r a ined  with cont ro l  a c t i o n  ua(~o ), 0 -< ~o _< go0a , which  solves 

p r o b l e m  (19) for n = 3, Curve  2 is t he  t e m p e r a t u r e  d i s t r ibu-  

t i on  to which  corresponds t he  cont ro l  ac t ion  u~(go), 0 -< ~o _< 

-< ~%3, o b t a i n e d  by solving (22) with  ~o 0 = ~o0a. Func t i on  

u~(~o) is the  o p t i m u m  cont ro l  ac t ion ,  s ince  (22) does not a d  

mi t  o ther  solut ions r educ ing  the  v a l u e  of t he  f u n c t i o n a l  I0. 

The  va lues  of I0 for curves 1 and 2 are,  r e spec t i ve ly ,  

0 . 00282 ;  0 . 0 0 2 5 1 .  

T h e  results  o b t a i n e d  i n d i c a t e  tha t  in  theory  it is pos- 

s ib le  to solve  the  problems  of o p t i m u m  cont ro l  of h e a t i n g  

of a m e t a l .  T h e  me thods  e m p l o y e d  should be  used to solve 

p rob lems  for bod ies  of more  c o m p l e x  shape  and aiso for 

more  c o m p l e x  l i m i t a t i o n s .  

NOTATION 

Q(x, y, z,  t )  - t e m p e r a t u r e  d i s t r ibu t ion  in body;  u*(t) - t e m p e r a t u r e  of h e a t i n g  m e d i u m ;  a - t h e r m a l  d i f fus iv i ty ;  

ct - h e a t  t ransfe r  c o e f f i c i e n t ;  oc 1 - r ad ian t  hea t  t ransfe r  c o e f f i c i e n t ;  k - t h e r m a l  c o n d u c t i v i t y ;  n(x,  y, z) - vec to r  nor -  

m a l  to surface  G; r - lag;  B, k0, Aa, A4, A5 - c e r t a i n  cons tan ts ;  T - t o t a l  h e a t i n g  t i m e ;  Bi = a S / k  - Blot n u m b e r ;  

= a t / S  2 - d imens ion le s s  t i m e  (Four ier  n u m b e r  Fo); Q* - requ i red  t e m p e r a t u r e  d i s t r ibu t ion  in p la t e ;  Q0 - i n i t i a l  t e m -  

pe ra tu re  d i s t r ibu t ion  in  p la t e ;  l = x /S  - d imens ion le s s  th i ckness ;  A 2, A 1 - m a x i m u m  and m i n i m u m  possible  fu rnace  t e m -  

pera tures ;  q(l,  ~0) - d imens ion le s s  t e m p e r a t u r e ;  ~k - pos i t ive  roots of the  e q u a t i o n  

2 sin ~*k 
= Bi ctg ~; A k = akq-sin~kc~ 
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