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The general problem of controlling the heating of massive bodies in chamber furnaces is formulated, and

optimum control solutions are given for two cases of heating of a plate with Newtonian heat transfer at its
surfaces.

Let us assume that a body is being heated in a furnace, the body occupying a certain region D bounded by a sur-
face G+ Let us further assume that the temperature of the heating medium u*(t) does not depend on the space coordinates.

Then the heating process for the body can be expressed by the equation of thermal conduction
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where (x, v, z) € D, t > 0,
together with the initial condition

Qlx, ¥, 2, 0)=Qulx, y, 2) (2)

and the following boundary condition of type III

By (O — 1Q) + 5 (4%(0) — Q), ®
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where Q = Q(x, y, z) and (x, ¥, z) € G.

As the control function we shall take the time function v(t), describing the position of the valve which opens to ad-
mit fuel to the working space of the furnace, and impose on this function the limitation

Al <o)< 4y, 4

where A} corresponds to the extreme position of the valve, at which a maximum quantity of fuel enters the furnace,
while the other extreme position of the valve v(t) = A} corresponds to complete shutdown of fuel admission.

The relation between u*(t) and ¥(t) must be assigned so as to introduce function v(t) into boundary condition (3) of
our problem. Using the language of automatic control theory, we need to find the transfer function of the system whose
input is the control action v(t), and whose output is the temperature of the heating medium. In the simplest case, the
transfer function may be represented in the form of two elementary links connected in series: a delay link, taking into
account the lag due to the finite rate of gas supply and the finite length of the pipeline between the control valve and
the working space of the furnace, and an inertia link, taking into account the gradual rise of temperature in the furnace
for a stepwise increase in fuel supply. The equation of this transfer function has the form

Bil%(‘t)‘ +ut (f) = ko (t — ). v

To formulate the optimum heating problem, we must take into consideration a number of limits, the most impor-
tant being the limits of the surface temperature, temperature gradients, and temperature drops in the body.

These may be written in the form:

Qx, y, 2, 1) <Ay when  (x, y, 2)CG, (8
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The quality of heating can be expressed as the following functional:

Iy= j” [Qx, 4, 2 Tj-—Q*(x, Y, 2)|*dxdydz.
D
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The following formulations of the problem of optimum heating control are of practical interest.

1. For the conduction equation (1)-(3) and the coupling equation (5) choose a control action v(t), 0 =t = T, restrained
by condition (4), such that the functional Iy satisfies the condition Iy = & (where & is some assigned number & > 0 denot -
ing the accuracy of approximation to the desired distribution) in the minimum possible time T, while at any instant ¢ =
=1t = T, the limitations(6), (7), (8) must be observed.

2. For conduction equation (1)-{3), coupling equation {5), and a given heating time, the contro! action v{t), 0 =t = T,
restrained by condition (4), must be such that the functional I, attains its minimum possible value at time t = T, while
the limitations (8), (7), (8) are observed throughout the entire heating process.

Let us examine in derail the solution of the simpler problems concerning optimum heating of a one-dimensional
plate of thickness 25 in a medium with temperature u*(t), subject to the limitation

A, < wih) < A, ™

Bearing in mind that the duration of all the intermediate processes in the furnace is incommensurably less than the
overal] heating time, we shall neglect the inerria of the furnace and the lag in the pipeline and take as control action
the temperature of the medium u¥(t).

We shall write the conduction equation for the plate in criterial dimensionless form:
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The conversion formulas to dimensionless quantities are:
2[Q (1, ¢)— Q7

{ = ’ , 14
q( ’ CP) A2~—A] ( )

, 20u*(9) — Q¥
u = —— 15
(9) A, — A, (15)

2{Q* — Qo
B LA . 18
v A4 (16)
T kA (an
Ay~ A

We shall agsume the initial and the required temperature distributions in the plate to be constant and equal respectively
to Qp and Q%

By virtue of (9), (14), (15), (17) the dimensionless control action u(e) is now restrained by the condition
— (1 =) = u(e) < (1 4. (18)
We shall find the control action W(@), 0 = ¢ = ¢y, restrained by condition (18}, such that the equality

g, 2) =0, —l<i<+l. (19)

is fulfilled in the minimum time ¢q. The solution of equations (10)-(13) may be written in the form [3]

g(l, 9) =X A, cospy! {—ﬂ exp [—nio] + vl;?;f u(g) K

k=l 0
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It is not hard to see that to satisfy (19) for minimum ¢, it is necessary and sufficient that function u(¢) satisfy an

infinite number of equaliries of the type
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the time ¢, then being the minimum possible. In mathematics this problem is called the infinite-dimensional problem of
moments. It was shown in [4] that a function u(¢), 0 = ¢ = @,, satisfying (21) exists, assumes ohly its boundary values
(1 - x) and (1 + x), and has an unbounded but denumerable number of change-over points on the intercept [0, ¢4], the
point ¢y being a limiting change-over point. The form of this function is shown in Fig. 1.

Solving the problem for finite n, i.e., k =1, 2,++., nin(21), a finite-number problem of moments; we can sat -
isfy (19) to any degree of accuracy specified in advance. Methods of solution of finite-number problems of moments are
set out in detail in [2] and [5]. 1In practice, to obtain the best approximation to a required distribution, it is usually
enough to put n = 2, 3, 4. Here, the greater the parameter Bi, the more slowly the terms of series (20) decrease, and
the larger must be the number n.

Let us consider a numerical example. Assume that it is re- i
quired to heat a solid slab of thickness 25 = 0.4 m from an initial -
temperature Qp = 20° to a temperature Q¥ = 960°. Assume further ' , “

0.03
that a = ———— m%/sec, \ = 30 X 1.163 w/m » degree, o

36- 10? . g, AN
= 225 X 1.163 w/m" » degree, and consequently, Bi = 1.5, x =
=0.6, v =2.35.
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Using methods set out in [2], we find functions uy(®), ug(¥),
which transform to identity the first two or three of equations (21)
in the minimum possible time. Returning then to dimensional quan-
tities, we obtain

-f

1600° C 0< ¢ L Fig. 1. Form of optimum control accurately real-
us () = 160 when << 77 min, izing uniform temperature distribution in minimum

-+ 800° C when 77 min < t$87 time.
-+ 1600° C when 0< ¢ < 78 min,
us =1+ 800°C when 78 min <t < 88,5 min,

—+ 1600° C when 88,5 min < < 89 min .

The temperature distributions obtained in the plate for this control action are shown in Fig. 2.

Note that for engineering applications the difference between control actions u§(t) and ui(t) is insignificant, In-
deed, a second switching of function uj(t) does not make sense, since its last interval of constancy is only 30 sec, and
certainly comparable with the duration of the transient process in any real furnace.

We shall formulate the second plate problem as fol-
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920 By the method of the maximum principle [1], we can
42 o ; g af X obtain the necessary condition, which the optimum control
Fig. 2. Temperature distributions in plate: action u(¢) must satisfy, in the form

Bi = 1.5, x = 0.6, v =2.35. 1 and 2 — for control
actions u§(t) and ui(t).

u(@) = » + sign { Y B exp [—p2 (90— 9)] [v exp (— pi@o) — f u(@) exp [— p2(go—9)] drp] } ., (22)
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where By =
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So far, a general method of solution of equation (22) for any value ¢, has not been found. However, in certain
special cases this equation can be solved by a numerical method. For example, if the time ¢g3 (the minimum time for

which problem (19) has a solution for n = 8) is fixed, then it is not hard to show that (22) does not admit solutions with a

nurnber of change -overs greater than two, for any ¢y = @¢3, and, consequently, for this region the variation of time is
easily sought. For example, a solution minimizing functional Iy may be found by inspection.
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Fig. 3. Temperature distributions in plate:

Bi =3.0, x=0.0, v = 1.5; 1 — heating with con-
trol action ug(#)i 2 — optimum heating, in the
sense of least mean square deviation, with control
action ug(®).

+1 when 0 = ¢ = 0,700,
ug(®) ={—1 when 0,700 < ¢ = 0,765,
+1 when 0.765 < ¢ = 0, 780;

+1 when 0 = ¢ = 0,702,
ug(p) =3 —1 when 0.702 < ¢ = 0,767,
+] when 0.767 < ¢ = 0,780,

Fig. 3 gives the solution of the example Bi = 3.0, » =
=0, v =1.5. Curve 1 is the temperature distribution ob-
tained with control action uy(¢), 0 = ¢ = ¢y3, which solves
problem (19) for n = 3. Curve 2 is the temperature distribu-
tion to which corresponds the control action uj(¢), 0 = ¢ =
= ¢y3, obtained by solving (22) with ¢4 = @43, Function
ug( @) is the optimum control action, since (22) does not ad-
mit other solutions reducing the value of the functional I.
The values of I, for curves 1 and 2 are, respectively,
0.00282; 0.00251.

The results obtained indicate that in theory it is pos-
sible to solve the problems of optimum control of heating
of a metal. The methods employed should be used to solve
problems for bodies of more complex shape and also for
more complex limitations.

NOTATION

Q(x, ¥, 2, t) — temperature distribution in body; u*(t) — temperature of heating medium; a — thermal diffusivity;
o — heat transfer coefficient; oy — radiant heat transfer coefficient; A — thermal conductivity; n(x, y, z) — vector nor-

mal to surface G; 7 — lag: B, kg, As, Ay, A5 — certain constants; T — total heating time; Bi = oS/N — Biot number;
@ =oat/S? — dimensionless time (Fourier number Fo); Q* — required temperature distribution in plate; Qp — initial tem-

perature distribution in plate; 7 = x/S — dimensionless thickness; Ay, Ay — maximum and minimum possible furnace tem-

peratures; q(/, @) — dimensionless temperature; g — positive roots of the equation

. 2sinpg
p = Bi ctg us Ak =
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